# Brane Couplings from Bulk Loops^{*}^{*}*Research supported in
part by the
National Science Foundation
under grant number NSF-PHY/98-02709.

###### Abstract

We compute loop corrections to the effective action of a field theory on a five-dimensional orbifold. We find that the quantum loop effects of interactions in the bulk produce infinite contributions that require renormalization by four-dimensional couplings on the orbifold fixed planes. Thus bulk couplings give rise to renormalization group running of brane couplings.

#HUTP-00/A030

12/00

## 1 Introduction

Recently it has been proposed that large extra dimensions may be relevant to particle physics at or near the weak scale [1]. This idea has opened up new possibilities for model building that make use of extra dimensions [2]. In [3], we studied a simple model of fermions and scalars interacting on a five-dimensional space with the fifth coordinate compactified on an orbifold. In this model, the scalar field develops spatially varying vacuum expectation value resulting in a “fat brane” structure. The fermion field has a chiral zero mode that can be localized near either of the orbifold fixed points.

In this note, we continue our analysis of the model by computing loop corrections to the effective Lagrangian. The orbifold boundary conditions introduce two complications into the analysis. First, they break translation invariance (and hence momentum conservation) in the fifth dimension. Second, they single out two “fixed points” that are invariant under the action on . As a result, couplings in the five-dimensional bulk can give rise to infinite effects that must be renormalized by couplings on the four-dimensional orbifold fixed planes. This renormalization is associated with running of the four-dimensional couplings on the fixed planes. In the following sections we develop the necessary formalism for computing perturbative corrections to the effective Lagrangian, and give examples of its use by computing the leading-logarithmic “brane terms” associated with renormalization group running for several special cases. A previous study of perturbative field theory on orbifolds can be found in [4]. This work considered a model with supersymmetric field theories living on the fixed planes, and discussed mechanisms for communicating supersymmetry breaking from one brane to the other.

## 2 Propagators

We consider a five dimensional Yukawa theory with the bulk action

(2.1) |

The fifth dimension is compactified on a circle of circumference with points on opposite sides of the circle identified. Thus, for instance, points in are identified with points in . The points and are invariant under the action, and are referred to as fixed points. The fields are periodic with period , and satisfy the boundary conditions

(2.2) |

and

(2.3) |

It was shown in [3] that this model possesses a single chiral fermion zero mode. In addition, for suitable , the scalar acquires a spatially varying vacuum expectation value (VEV) . This spatially varying VEV can localize the chiral zero mode near either end of the orbifold.

Now consider the propagators in this model. If we ignore the boundary conditions, the fermion propagator is simply that of a massless five-dimensional fermion:

(2.4) |

There are two differences on the orbifold. One is that there are true periodic boundary conditions when . This implies that

(2.5) |

for integer . The other difference is that because the physical region in the orbifold is smaller than the periodicity, momentum in the direction is not conserved. This is related to the reflection constraints at the orbifold boundary. An easy way to find the momentum space propagator is to notice that we can write in terms of an unconstrained field as

(2.6) |

This field automatically satisfies 2.2. We can now use this to compute the momentum space propagator. Notice that since both and appear in (2.6), the propagator

(2.7) |

depends on both and . Doing the Fourier transform gives

(2.8) |

This can be simplified to

(2.9) |

Similarly, we can find the scalar propagator by rewriting in terms of an unconstrained field as

(2.10) |

This gives a propagator

(2.11) |

## 3 Fermions

Now consider the one-loop correction to the fermion propagator from the diagram in fig.1. The fermion has momentum coming in and momentum going out. Momentum is conserved at the vertices. So say that the incoming fermion splits into a fermion with momentum and a scalar with momentum . These propagate and the 5 components change drop their primes and get reabsorbed. The internal loop momentum is integrated and and are summed over. The diagram is then

(3.1) |

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... |

Summing over , the integrand becomes

(3.2) |

(3.3) |

When we do the -dimensional integral in (3.1), we encounter pole terms (where ). In this paper, we consider only these divergent terms. For the pole terms, the dependence comes only from the -functions and the numerator in (3.3). The first two terms in braces in (3.3) give contributions where is conserved. These terms are contributions to the five-dimensional bulk fermion kinetic energy. However, the last two terms have a different structure. They do not conserve and therefore cannot be associated with any term in the bulk Lagrangian. Rather, they yield a sum of terms where changes by an even multiple of . These terms give contributions to the action that depend only on the values of the fields at the orbifold fixed points , and thus they renormalize the couplings on the brane. We can understand this by considering a generic momentum space operator like

(3.4) |

where is some Dirac matrix. Transforming this to position space gives

(3.5) |

The constraint that changes by an even multiple of means that we get -functions at . We have explictly written the -functions that are singular in the physical region . If all multiples of were summed over, we would of course get -functions at .

Explicitly evaluating (3.1), we encounter a divergent piece

(3.6) |

When we eliminate the pole by minimal subtraction, we are renormalizing a brane term. This contributes to the running of the corresponding term on the brane. Subtracting and converting back to position space gives the contribution to the effective Lagrangian:

(3.7) |

where .

## 4 Scalars

In this section, we consider the divergent contributions to loops involving external scalars. The one-loop scalar tadpole is shown in Fig. 2.

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... |

This diagram yields

(4.1) |

where we have used momentum conservation at the vertex to write . As before, the first Kronecker- has the form of a renormalization of the bulk Lagrangian (the coefficient vanishes in this case), while the second yields a brane term. Evaluating the integral with dimensional regularization and minimal subtraction gives

(4.2) |

In cutoff regularization, we would also find a quadratic divergence proportional to

(4.3) |

The effect of the term can be made more tranparent by a change of variables in . For instance if the scalar potential vanishes, then we can eliminate the tadpole from the scalar sector of the theory by making the substitution

(4.4) |

This shift introduces a term proportional to fermion equation of motion.

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. |

The one loop contribution to the scalar propagator from the diagram in figure 3 gives no contribution to interactions on the brane. In this case, the loop integral is

(4.5) | |||||

The brane terms vanish, since they are proportional to traces of odd numbers of matrices, or traces of fewer than four Dirac matrices with . From symmetry considerations alone, one might have expected to find brane terms proportional to . At higher loops, such terms are indeed generated. To investigate this, let’s consider the two-loop graph in figure 4.

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ |

Now consider the conservation of the 5 component of the loop momentum around the loop. Each of the propagators conserves the 5 component of the momentum it carries up to a factor of . Call these factors s, and associate the s with propagators as shown in figure 5. Then we have

(4.6) |

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. |